Interview has been regarded as one of the most crucial step for recruitment. To fully prepare for the interview with the recruiters, job seekers usually practice with mock interviews between each other. However, such a mock interview with peers is generally far away from the real interview experience: the mock interviewers are not guaranteed to be professional and are not likely to behave like a real interviewer. Due to the rapid growth of online recruitment in recent years, recruiters tend to have online interviews, which makes it possible to collect real interview data from real interviewers. In this paper, we propose a novel application named EZInterviewer, which aims to learn from the online interview data and provides mock interview services to the job seekers. The task is challenging in two ways: (1) the interview data are now available but still of low-resource; (2) to generate meaningful and relevant interview dialogs requires thorough understanding of both resumes and job descriptions. To address the low-resource challenge, EZInterviewer is trained on a very small set of interview dialogs. The key idea is to reduce the number of parameters that rely on interview dialogs by disentangling the knowledge selector and dialog generator so that most parameters can be trained with ungrounded dialogs as well as the resume data that are not low-resource. Evaluation results on a real-world job interview dialog dataset indicate that we achieve promising results to generate mock interviews. With the help of EZInterviewer, we hope to make mock interview practice become easier for job seekers.
translated by 谷歌翻译
Panoptic Part Segmentation (PPS) unifies panoptic segmentation and part segmentation into one task. Previous works utilize separated approaches to handle thing, stuff, and part predictions without shared computation and task association. We aim to unify these tasks at the architectural level, designing the first end-to-end unified framework named Panoptic-PartFormer. Moreover, we find the previous metric PartPQ biases to PQ. To handle both issues, we make the following contributions: Firstly, we design a meta-architecture that decouples part feature and things/stuff feature, respectively. We model things, stuff, and parts as object queries and directly learn to optimize all three forms of prediction as a unified mask prediction and classification problem. We term our model as Panoptic-PartFormer. Secondly, we propose a new metric Part-Whole Quality (PWQ) to better measure such task from both pixel-region and part-whole perspectives. It can also decouple the error for part segmentation and panoptic segmentation. Thirdly, inspired by Mask2Former, based on our meta-architecture, we propose Panoptic-PartFormer++ and design a new part-whole cross attention scheme to further boost part segmentation qualities. We design a new part-whole interaction method using masked cross attention. Finally, the extensive ablation studies and analysis demonstrate the effectiveness of both Panoptic-PartFormer and Panoptic-PartFormer++. Compared with previous Panoptic-PartFormer, our Panoptic-PartFormer++ achieves 2% PartPQ and 3% PWQ improvements on the Cityscapes PPS dataset and 5% PartPQ on the Pascal Context PPS dataset. On both datasets, Panoptic-PartFormer++ achieves new state-of-the-art results with a significant cost drop of 70% on GFlops and 50% on parameters. Our models can serve as a strong baseline and aid future research in PPS. Code will be available.
translated by 谷歌翻译
In contrast to the control-theoretic methods, the lack of stability guarantee remains a significant problem for model-free reinforcement learning (RL) methods. Jointly learning a policy and a Lyapunov function has recently become a promising approach to ensuring the whole system with a stability guarantee. However, the classical Lyapunov constraints researchers introduced cannot stabilize the system during the sampling-based optimization. Therefore, we propose the Adaptive Stability Certification (ASC), making the system reach sampling-based stability. Because the ASC condition can search for the optimal policy heuristically, we design the Adaptive Lyapunov-based Actor-Critic (ALAC) algorithm based on the ASC condition. Meanwhile, our algorithm avoids the optimization problem that a variety of constraints are coupled into the objective in current approaches. When evaluated on ten robotic tasks, our method achieves lower accumulated cost and fewer stability constraint violations than previous studies.
translated by 谷歌翻译
Zero-Shot Learning has been a highlighted research topic in both vision and language areas. Recently, most existing methods adopt structured knowledge information to model explicit correlations among categories and use deep graph convolutional network to propagate information between different categories. However, it is difficult to add new categories to existing structured knowledge graph, and deep graph convolutional network suffers from over-smoothing problem. In this paper, we provide a new semantic enhanced knowledge graph that contains both expert knowledge and categories semantic correlation. Our semantic enhanced knowledge graph can further enhance the correlations among categories and make it easy to absorb new categories. To propagate information on the knowledge graph, we propose a novel Residual Graph Convolutional Network (ResGCN), which can effectively alleviate the problem of over-smoothing. Experiments conducted on the widely used large-scale ImageNet-21K dataset and AWA2 dataset show the effectiveness of our method, and establish a new state-of-the-art on zero-shot learning. Moreover, our results on the large-scale ImageNet-21K with various feature extraction networks show that our method has better generalization and robustness.
translated by 谷歌翻译
Automatic image colorization is a particularly challenging problem. Due to the high illness of the problem and multi-modal uncertainty, directly training a deep neural network usually leads to incorrect semantic colors and low color richness. Existing transformer-based methods can deliver better results but highly depend on hand-crafted dataset-level empirical distribution priors. In this work, we propose DDColor, a new end-to-end method with dual decoders, for image colorization. More specifically, we design a multi-scale image decoder and a transformer-based color decoder. The former manages to restore the spatial resolution of the image, while the latter establishes the correlation between semantic representations and color queries via cross-attention. The two decoders incorporate to learn semantic-aware color embedding by leveraging the multi-scale visual features. With the help of these two decoders, our method succeeds in producing semantically consistent and visually plausible colorization results without any additional priors. In addition, a simple but effective colorfulness loss is introduced to further improve the color richness of generated results. Our extensive experiments demonstrate that the proposed DDColor achieves significantly superior performance to existing state-of-the-art works both quantitatively and qualitatively. Codes will be made publicly available.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
The self-configuring nnU-Net has achieved leading performance in a large range of medical image segmentation challenges. It is widely considered as the model of choice and a strong baseline for medical image segmentation. However, despite its extraordinary performance, nnU-Net does not supply a measure of uncertainty to indicate its possible failure. This can be problematic for large-scale image segmentation applications, where data are heterogeneous and nnU-Net may fail without notice. In this work, we introduce a novel method to estimate nnU-Net uncertainty for medical image segmentation. We propose a highly effective scheme for posterior sampling of weight space for Bayesian uncertainty estimation. Different from previous baseline methods such as Monte Carlo Dropout and mean-field Bayesian Neural Networks, our proposed method does not require a variational architecture and keeps the original nnU-Net architecture intact, thereby preserving its excellent performance and ease of use. Additionally, we boost the segmentation performance over the original nnU-Net via marginalizing multi-modal posterior models. We applied our method on the public ACDC and M&M datasets of cardiac MRI and demonstrated improved uncertainty estimation over a range of baseline methods. The proposed method further strengthens nnU-Net for medical image segmentation in terms of both segmentation accuracy and quality control.
translated by 谷歌翻译
Directly training a document-to-document (Doc2Doc) neural machine translation (NMT) via Transformer from scratch, especially on small datasets usually fails to converge. Our dedicated probing tasks show that 1) both the absolute position and relative position information gets gradually weakened or even vanished once it reaches the upper encoder layers, and 2) the vanishing of absolute position information in encoder output causes the training failure of Doc2Doc NMT. To alleviate this problem, we propose a position-aware Transformer (P-Transformer) to enhance both the absolute and relative position information in both self-attention and cross-attention. Specifically, we integrate absolute positional information, i.e., position embeddings, into the query-key pairs both in self-attention and cross-attention through a simple yet effective addition operation. Moreover, we also integrate relative position encoding in self-attention. The proposed P-Transformer utilizes sinusoidal position encoding and does not require any task-specified position embedding, segment embedding, or attention mechanism. Through the above methods, we build a Doc2Doc NMT model with P-Transformer, which ingests the source document and completely generates the target document in a sequence-to-sequence (seq2seq) way. In addition, P-Transformer can be applied to seq2seq-based document-to-sentence (Doc2Sent) and sentence-to-sentence (Sent2Sent) translation. Extensive experimental results of Doc2Doc NMT show that P-Transformer significantly outperforms strong baselines on widely-used 9 document-level datasets in 7 language pairs, covering small-, middle-, and large-scales, and achieves a new state-of-the-art. Experimentation on discourse phenomena shows that our Doc2Doc NMT models improve the translation quality in both BLEU and discourse coherence. We make our code available on Github.
translated by 谷歌翻译
In this paper, we introduce a novel approach for ground plane normal estimation of wheeled vehicles. In practice, the ground plane is dynamically changed due to braking and unstable road surface. As a result, the vehicle pose, especially the pitch angle, is oscillating from subtle to obvious. Thus, estimating ground plane normal is meaningful since it can be encoded to improve the robustness of various autonomous driving tasks (e.g., 3D object detection, road surface reconstruction, and trajectory planning). Our proposed method only uses odometry as input and estimates accurate ground plane normal vectors in real time. Particularly, it fully utilizes the underlying connection between the ego pose odometry (ego-motion) and its nearby ground plane. Built on that, an Invariant Extended Kalman Filter (IEKF) is designed to estimate the normal vector in the sensor's coordinate. Thus, our proposed method is simple yet efficient and supports both camera- and inertial-based odometry algorithms. Its usability and the marked improvement of robustness are validated through multiple experiments on public datasets. For instance, we achieve state-of-the-art accuracy on KITTI dataset with the estimated vector error of 0.39{\deg}. Our code is available at github.com/manymuch/ground_normal_filter.
translated by 谷歌翻译
How to effectively explore the colors of reference exemplars and propagate them to colorize each frame is vital for exemplar-based video colorization. In this paper, we present an effective BiSTNet to explore colors of reference exemplars and utilize them to help video colorization by a bidirectional temporal feature fusion with the guidance of semantic image prior. We first establish the semantic correspondence between each frame and the reference exemplars in deep feature space to explore color information from reference exemplars. Then, to better propagate the colors of reference exemplars into each frame and avoid the inaccurate matches colors from exemplars we develop a simple yet effective bidirectional temporal feature fusion module to better colorize each frame. We note that there usually exist color-bleeding artifacts around the boundaries of the important objects in videos. To overcome this problem, we further develop a mixed expert block to extract semantic information for modeling the object boundaries of frames so that the semantic image prior can better guide the colorization process for better performance. In addition, we develop a multi-scale recurrent block to progressively colorize frames in a coarse-to-fine manner. Extensive experimental results demonstrate that the proposed BiSTNet performs favorably against state-of-the-art methods on the benchmark datasets. Our code will be made available at \url{https://yyang181.github.io/BiSTNet/}
translated by 谷歌翻译